rational numbers - определение. Что такое rational numbers
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое rational numbers - определение

PRODUCT OF SOME INTEGER WITH ITSELF
Square numbers; Perfect squares; Rational square; A000290; Perfect square number
  • Proof without words for the sum of odd numbers theorem
  • gnomons]].
  • 1 + 3 + 5 + ... + (2''n'' − 1) {{=}} ''n''<sup>2</sup>}}. Animated 3D visualization on a tetrahedron.

Rational egoism         
ETHICAL THEORY
Rational selfishness; Rational egoist; Rational self-interest; Rational Selfishness; Egoism (rational); Rational self interest
Rational egoism (also called rational selfishness) is the principle that an action is rational if and only if it maximizes one's self-interest.Baier (1990), p.
Num.         
  • [[Priest]], [[Levite]], and furnishings of the [[Tabernacle]]
  • [[Balaam]] and the Angel (illustration from the 1493 ''[[Nuremberg Chronicle]]'')
FOURTH BOOK OF THE BIBLE
Num.; Numbers (book of Bible); Numbers, Book of; Book of numbers; Book of Num.; Book Of Numbers; The Book of Numbers; Numbers 30; Numbers 32; Numbers 6; Numbers 16; Numbers 34; Numbers 26; Numbers 27; Numbers 36; Numbers 35; Numbers 22; Numbers 24; Numbers 28; Numbers 3; Numbers 29; Numbers 14; Numbers 7; Numbers 4; Numbers 23; Numbers 17; Numbers 19; Numbers 12; Numbers 20; Numbers 8; Numbers 18; Numbers 9
¦ abbreviation Numbers (in biblical references).
Book of Numbers         
  • [[Priest]], [[Levite]], and furnishings of the [[Tabernacle]]
  • [[Balaam]] and the Angel (illustration from the 1493 ''[[Nuremberg Chronicle]]'')
FOURTH BOOK OF THE BIBLE
Num.; Numbers (book of Bible); Numbers, Book of; Book of numbers; Book of Num.; Book Of Numbers; The Book of Numbers; Numbers 30; Numbers 32; Numbers 6; Numbers 16; Numbers 34; Numbers 26; Numbers 27; Numbers 36; Numbers 35; Numbers 22; Numbers 24; Numbers 28; Numbers 3; Numbers 29; Numbers 14; Numbers 7; Numbers 4; Numbers 23; Numbers 17; Numbers 19; Numbers 12; Numbers 20; Numbers 8; Numbers 18; Numbers 9
The book of Numbers (from Greek Ἀριθμοί, Arithmoi; , Bəmīḏbar, "In the desert [of]") is the fourth book of the Hebrew Bible, and the fourth of five books of the Jewish Torah. The book has a long and complex history; its final form is possibly due to a Priestly redaction (i.

Википедия

Square number

In mathematics, a square number or perfect square is an integer that is the square of an integer; in other words, it is the product of some integer with itself. For example, 9 is a square number, since it equals 32 and can be written as 3 × 3.

The usual notation for the square of a number n is not the product n × n, but the equivalent exponentiation n2, usually pronounced as "n squared". The name square number comes from the name of the shape. The unit of area is defined as the area of a unit square (1 × 1). Hence, a square with side length n has area n2. If a square number is represented by n points, the points can be arranged in rows as a square each side of which has the same number of points as the square root of n; thus, square numbers are a type of figurate numbers (other examples being cube numbers and triangular numbers).

Square numbers are non-negative. A non-negative integer is a square number when its square root is again an integer. For example, 9 = 3 , {\displaystyle {\sqrt {9}}=3,} so 9 is a square number.

A positive integer that has no square divisors except 1 is called square-free.

For a non-negative integer n, the nth square number is n2, with 02 = 0 being the zeroth one. The concept of square can be extended to some other number systems. If rational numbers are included, then a square is the ratio of two square integers, and, conversely, the ratio of two square integers is a square, for example, 4 9 = ( 2 3 ) 2 {\displaystyle \textstyle {\frac {4}{9}}=\left({\frac {2}{3}}\right)^{2}} .

Starting with 1, there are m {\displaystyle \lfloor {\sqrt {m}}\rfloor } square numbers up to and including m, where the expression x {\displaystyle \lfloor x\rfloor } represents the floor of the number x.